Sztuczna inteligencja w analizie politycznej: nowe horyzonty, możliwości i wyzwania

Autor

  • Kamil Bednarz Akademia Górniczo-Hutnicza w Krakowie
  • Dominik Jaśkowiec Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Mateusz Zaręba Akademia Górniczo-Hutnicza w Krakowie

DOI:

https://doi.org/10.24917/20845456.21.3

Słowa kluczowe:

analiza danych, frekwencja wyborcza, preferencje polityczne, sztuczna inteligencja, wybory

Abstrakt

Analizy wykorzystujące techniki sztucznej inteligencji (SI) stają się coraz istotniejszym elementem badań naukowych, co wynika z rosnącej dostępności mocy obliczeniowej oraz wysokiej jakości danych. Dzięki zastosowaniu algorytmów SI możliwe jest wykonywanie trafnych predykcji, zaawansowanej klasyfikacji wieloklasowej oraz analizowanie podobieństw między zbiorami cech o różnorodnych wymiarach, które charakteryzują poszczególne obserwacje danych. W niniejszej publikacji wykorzystano techniki eksploracyjnej analizy danych oraz nienadzorowanego uczenia maszynowego w celu przestrzennego zbadania preferencji wyborczych w Polsce w latach 2019–2024. Wykorzystano dane z wyborów parlamentarnych, samorządowych oraz do Parlamentu Europejskiego. Wykazano występowanie obszarów o wysokiej frekwencji wyborczej, zidentyfikowanych w klastrze 4, obejmującym duże aglomeracje miejskie oraz Polskę centralną, a także obszarów o niskiej frekwencji, zlokalizowanych głównie na terenach Polski wschodniej oraz północno-zachodniej. Pokazano również interesującą zależność pomiędzy wysokością frekwencji a poparciem
dla poszczególnych ugrupowań politycznych w dwóch kolejnych cyklach wyborczych. Dodatkowo przeanalizowano etyczne aspekty wykorzystania technik SI w badaniach nad procesami demokratycznymi, zwracając uwagę na przyszłe kierunki rozwoju i stojące przed nimi wyzwania.

Bibliografia

Ahmed, M., Seraj, R., Islam, S.M.S. (2020). The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 9(8), 1295, doi: 10.3390/electronics9081295

Arkhipova, D., Janssen, M. (2024). AI Recommendations’ Impact on Individual and Social Practices of Generation Z on Social Media: A Comparative Analysis between Estonia, Italy, and the Netherlands. Semiotica, 261, 61–86, doi: 10.1515/sem-2023-0089

Bennett, W.L., Segerberg, A. (2012). The Logic of Connective Action: Digital Media and the Personalization of Contentious Politics. Information, Communication & Society, 15(5), 739–768, doi: 10.1080/1369118X.2012.670661

Berelson, B.R., Lazarsfeld, P.F., McPhee, W.N. (1954). Voting: A Study of Opinion Formation in a Presidential Campaign. Chicago: University of Chicago Press.

Dommett, K. (2019). Data-driven Political Campaigns in Practice: Understanding and Regulating Diverse Data-Driven Campaigns. Internet Policy Review, 8(4), 1–18. doi: 10.14763/2019.4.1432

Flasiński, M. (2011). Wstęp do sztucznej inteligencji. Warszawa: Wydawnictwo Naukowe PWN.

Flis, J., Stolicki, D. (2017). Przechyły terytorialne – zróżnicowania wyborczej bazy samorządowych włodarzy. W: T. Koziełło, D. Szczepański (red.), Geografia wyborcza Polski. Interpretacje postaw i zachowań obywateli. Rzeszów: Wydawnictwo Uniwersytetu Rzeszowskiego.

Gentzkow, M., Shapiro, J.M. (2011). Ideological Segregation Online and Offline. The Quarterly Journal of Economics, 126(4), 1799–1839, doi: 10.1093/qje/qjr043

Gerlich, M. (2023). Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. Social Sciences, 12(9), 502, doi: 10.3390/socsci12090502

Golosov, G.V. (2010). The Effective Number of Parties: A New Approach. Party Politics, 16(2), 171–192, doi: 10.1177/1354068809342522

Haenlein, M., Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future Of Artificial Intelligence. California Management Review, 61(4), 5–14, doi: 10.1177/0008125619864925

Jaworska-Surma, A. (2023). Fenomen wyborczej mobilizacji: Przyczyny rekordowej frekwencji podczas wyborów parlamentarnych 2023 – wnioski z badań. Warszawa: Fundacja im. Stefana Batorego.

Jungherr, A. (2023). Artificial Intelligence and Democracy: A Conceptual Framework. Social Media + Society, 9(3), 1–14. doi: 10.1177/20563051231186353

Kasuya, Y., Moenius, J. (2008). The Nationalization of Party Systems: Conceptual Issues and Alternative District-Focused Measures. Electoral Studies, 27(1), 126–135, doi: 10.1016/j.electstud.2007.09.004

Morandín-Ahuerma, F. (2023). Ethics of AI from Global Companies: Microsoft, Google, Meta, and Apple. W: Normative Principles for an Ethics of Artificial Intelligence. Puebla: Council of Science and Technology of the State of Puebla (Concytep – Mexico), 137–161.

Murawska, A. (2017). Uwarunkowania aktywności wyborczej mieszkańców Łodzi i Iwanowa. Rocznik Nauk Społecznych. Annals of Social Sciences, 9(45), 101, doi: 10.18290/rns.2017.9.1-6

Pei, G., Zhang, J., Hu, M., Zhang, Z., Wang, C., Wu, Y., Zhai, G., Yang, J., Shen, C., Tao, D. (2024). Deepfake Generation and Detection: A Benchmark and Survey. arXiv:2403.17881, doi: 10.48550/arXiv.2403.17881

Rattan, R., Kataria, T., Banerjee, S., Goyal, S., Gupta, D., Pandita, A., Bisht, S., Narang, K., Mishra, S.R. (2019). Artificial Intelligence in Oncology, its Scope and Prospects with Specific Reference to Radiation Oncology. BJR Open, 1(1), 20180031, doi: 10.1259/bjro.20180031

Ray, P.P. (2023). ChatGPT: A Comprehensive Review on Background, Applications, Key Challenges, Bias, Ethics, Limitations and Future Scope. Internet of Things and Cyber-Physical Systems, 3, 121–154, doi: 10.1016/j.iotcps.2023.04.003

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., Liu, J. (2021). A Quantitative Discriminant Method of Elbow Point for the Optimal Number of Clusters in Clustering Algorithm. EURASIP Journal on Wireless Communications and Networking, 31, 1–16. doi: 10.1186/s13638-021-01910-w

Umargono, E., Suseno, J.E., Gunawan, S.K.V. (2020). K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula. Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), 121–129. Atlantis Press, doi: 10.2991/assehr.k.201010.019

Waskom, M.L. (2021). Seaborn: Statistical Data Visualization. Journal of Open Source Software, 6(60), 3021, doi: 10.21105/joss.03021

Zaręba, M., Danek, T., Stefaniuk, M. (2019). Some Statistical Considerations of Azimuth and Inclination Angles Determination Based on Walk-Away VSP Data in Python. E3S Web of Conferences, 133, 01006, doi: 10.1051/e3sconf/201913301006

Zaręba, M., Danek, T., Stefaniuk, M. (2023). Unsupervised Machine Learning Techniques for Improving Reservoir Interpretation Using Walkaway VSP and Sonic Log Data. Energies, 16(1), 493, doi: 10.3390/en16010493

Źródła internetowe:

Komisja Europejska. Doskonałość i wiarygodność sztucznej inteligencji. Commission.europa.eu, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/excellence-and-trust-artificial-intelligence_pl

(dostęp: 28.10.2024).

Microsoft. Identyfikowanie wytycznych dla odpowiedzialnego używania sztucznej inteligencji. Microsoft Learn, https://learn.microsoft.com/pl-pl/training/modules/embrace-responsible-ai-principles-practices/3-identify-guiding-principles-responsible-ai (dostęp: 25.10.2024).

Ministerstwo Cyfryzacji. Czym jest sztuczna inteligencja? Gov.pl, https://www.gov.pl/web/ai/czym-jest-sztuczna-inteligencja2 (dostęp: 15.10.2024).

Źródła danych:

Wybory do Parlamentu Europejskiego 2024 r., https://wybory.gov.pl/pe2024/pl/dane_w_arkuszach (dostęp: 1.07.2024).

Wybory do Sejmu i Senatu Rzeczypospolitej Polskiej 2019 r., https://sejmsenat2019.pkw.gov.pl/sejmsenat2019/pl/dane_w_arkuszach (dostęp: 1.07.2024).

Wybory do Sejmu i Senatu Rzeczypospolitej Polskiej 2023 r., https://sejmsenat2023.pkw.gov.pl/sejmsenat2023/pl/dane_w_arkuszach (dostęp: 1.07.2024).

Wybory Samorządowe 2024 r., https://samorzad2024.pkw.gov.pl/samorzad2024/pl/dane_w_arkuszach (dostęp: 1.07.2024).

Pobrania

Opublikowane

2025-06-21

Numer

Dział

Artykuły