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Summary
The health‑  related Sustainable Development Goals (SDGs) serve as pivotal benchmarks for 
gauging the health, well‑  being, and overall development of a nation’s populace. This study aims 
to meticulously scrutinize the available SDG indicators for the State of Mexico at the municipal 
level, employing sophisticated techniques rooted in exploratory spatial data analysis. The 
primary objective is to comprehensively grasp the interplay between these indicators and their 
geographic distribution. This analytical approach will unveil discernible patterns encompassing 
clustering, dispersion, spatial self‑  correlation, and other geographical trends within the selected 
indicators. Spatial autocorrelation, notably, plays a pivotal role in discerning similarities 
or disparities in values and their potential correlation with geographic proximity. This analysis 
serves to ascertain the existence of significant spatial patterns. To accomplish this, graphical 
tools like maps and diagrams will be utilized. These visual representations effectively convey 
geographical information, thereby facilitating the communication of findings. This methodology 
will be particularly invaluable in pinpointing vulnerable populations. Anticipated outcomes 
include robust findings that can substantially inform the development agendas and guide the 
implementation of public health policies within the Mexican entity.
Keywords: State of Mexico; Geoinformatics; health‑  related indicators; Sustainable 
Development Goals.

Abstrakt
Cele zrównoważonego rozwoju związane ze zdrowiem (SDGs) stanowią kluczowe wskaźniki 
do oceny zdrowia, samopoczucia i ogólnego rozwoju populacji danego kraju. Niniejsze badanie 
ma na celu szczegółowe zbadanie dostępnych wskaźników SDGs dla stanu Meksyk na pozio‑
mie gminnym, wykorzystując zaawansowane techniki zakorzenione w eksploracyjnej analizie 
przestrzennej danych. Głównym celem jest wszechstronne zrozumienie wzajemnych zależno‑
ści tych wskaźników i ich geograficznego rozkładu. Ten podejście analityczne ujawni widocz‑
ne wzorce obejmujące skupiska, rozproszenie, przestrzenną samokorelację i inne tendencje 
geograficzne w wybranych wskaźnikach. Samokorelacja przestrzenna odgrywa kluczową rolę 
w wykrywaniu podobieństw lub rozbieżności w wartościach oraz ich potencjalnej korelacji 
z bliskością geograficzną. Analiza ta służy ustaleniu istnienia istotnych wzorców przestrzen‑
nych. Aby to osiągnąć, wykorzystane zostaną narzędzia graficzne, takie jak mapy i diagramy. 
Te wizualne reprezentacje efektywnie przekazują informacje geograficzne, ułatwiając komu‑
nikację wyników. Metoda ta będzie szczególnie wartościowa w identyfikacji podatnych grup 
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ludności. Przewidywane rezultaty obejmują solidne wyniki, które znacząco mogą wpłynąć na 
agendy rozwojowe i wytyczanie polityki zdrowotnej w meksykańskim regionie.

Słowa kluczowe: Stan Meksyk; Geoinformatyka; wskaźniki związane ze zdrowiem; Cele 
Zrównoważonego Rozwoju.
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Introduction

In September 2015, the United Nations General Assembly endorsed the Sustainable 
Development Goals (SDGs), comprising 17 overarching objectives, 169 specific tar‑
gets, and 232 indicators (UN, 2020). Notably, a substantive segment of these—12 
goals, 33 targets, and 57 indicators—directly pertain to health considerations 
(SDG Collaborators, 2016; WHO, 2020; Asma et al., 2020; Novillo‑  Ortiz et al., 2021; 
Wilson et al., 2021). These metrics predominantly encompass health outcomes, 
healthcare services, and environmental risk factors (Asma et al., 2020). The fun‑
damental purpose of these globally applicable goals is to ensure the promotion 
of sound health and well‑  being across all age groups (UN, 2022).

The capacity to measure, analyze, and visually represent these indicators 
is of utmost importance. In this context, one highly effective tool is the exploratory 
analysis of spatial data (EASD). EASD facilitates the examination of geographic pat‑
terns, relationships, and distributions inherent in these health‑  related indicators, 
enabling a comprehensive understanding of spatial variations and associations 
critical to informed decision‑  making in health policy and intervention strategies.

Theoretical aspects

Health and territory

Health constitutes a comprehensive state encompassing physical, mental, and 
social dimensions, influenced by multifaceted factors. In 1946, the World Health 
Organization broadened the health concept, emphasizing not only disease but also 
promoting healthy lifestyles, disease prevention, and addressing mental and social 
well‑  being aspects.

Breilh (2003) posits health and disease within individuals or describing ep‑
idemiological patterns in social groups as intricate processes interlinking histo‑
ry, society, biology, and ecology. These factors interact within individuals, social 
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groups, and society itself. Meanwhile, the concept of territory in geographical anal‑
ysis spans beyond mere geographical extension, encompassing physical, political, 
cultural, and social characteristics, including aspects like administration, borders, 
property, and cultural identity.

Porto‑  Gonçalves (2002) asserts that territory embodies a complex concept 
influencing the formation of identities or territorialities. These identities evolve 
dynamically, molded by historical events and shaping specific territorial orders 
across different historical periods, consequently impacting the health conditions 
of populations.

Iñiguez and Barcellos (2003) emphasize understanding health processes 
through the lens of territory. They advocate for comprehending the ethical dia‑
logue between materiality and the significance of processes to foster the well‑  being 
of individuals and communities.

The intersection of health and territory entails a multidisciplinary exploration, 
probing how geographical and spatial factors impact population health. This in‑
tricate relationship spans various dimensions, encompassing disease geographical 
distributions and the accessibility of health services.

Exploratory analysis of spatial data (EASD) comprises techniques delineating 
and visualizing spatial distributions to identify outliers, spatial associations, clus‑
ter groupings, hot/cold spots, and spatial heterogeneity (Anselin, 1999). It involves 
analyzing geographical distribution patterns of each database indicator associated 
with maps, employing measures like mean, median, mode, variance, deviation, and 
kurtosis.

Spatial self‑  correlation, a technique within EASD, gauges the similarity be‑
tween neighboring geographical observations, elucidating if variable values in one 
place relate to nearby locations. Statistical tools such as the Moran index quantify 
global spatial self‑  correlation, with positive values indicating positive spatial as‑
sociation, negative values indicating negative spatial correlation, and values near 
zero signaling lack of spatial autocorrelation (Siabato W. and Guzmán J., 2019).

Local Spatial Association Analysis (LISA), a facet of Exploratory Spatial Data 
Analysis (EASD), identifies patterns of local spatial correlation within geograph‑
ic data. Using Moran’s local statistics, LISA discerns whether high or low values 
tend to cluster together in specific locations, revealing significant correlations with 
neighboring locations (Anselin, 1995).

Methodological aspects

(a)Study area

The State of Mexico is situated in the southern‑  central region of the country, sharing 
borders with Querétaro to the north, Hidalgo to the northeast, Tlaxcala to the east, 
Puebla to the southeast, Morelos and Mexico City to the south, Guerrero to the south‑
west, and Michoacán to the west. It is administratively divided into 125 jurisdictions 
and covers an extensive territory spanning 22,357 square kilometers (refer to Figure 
1). As per the 2020 Population Census and Housing data, the state boasts a populace 
of 16,992,418 inhabitants, making it the most densely populated entity in the coun‑
try and representing approximately 13.5% of the national population. (INEGI, 2020).
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In 2020, the economic output of the Mexican territory accounted for 9.1% of the 
national gross domestic product (GDP), ranking it as the second‑  largest economy 
within the country. The state’s GDP is predominantly structured, with 28% con‑
tributed by industries encompassing manufacturing, machinery and equipment, 
electronics, automotive, textiles, and maquiladora operations. The services sector 
makes up 22% of the GDP, while commerce, hotels, and restaurants collectively 
contribute 20%. Additionally, financial services and real estate activities account 
for 15% of the state’s GDP. (INEGI, 2021).

b) Sources of information and variables.

The variables utilized in this study were sourced from official repositories such 
as the 2020 Population and Housing Census, administered by the National Institute 
of Statistics and Geography. Additionally, data was acquired from the Health 
Information System (SINAIS) operated by the Ministry of Health.

The database comprises information from 125 municipalities and is limited 
to 10 key indicators at its alphanum level:

1. Underage mortality rate per 100,000.
2. Mortality rate among individuals over 65 years per 100,000.
3. Maternal mortality rate per 100,000.
4. Mortality rate of infants under 28 days old per 100,000.
5. Mortality rate due to cardiovascular diseases within the age group of 30–

70 years, per 100,000 population within a specified time frame.

Figure 1. Geographic location of the State of Mexico.

Source: authors.
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6. Mortality rate due to diabetes within the age group of 30–70 years, per 
100,000 population during a specific period.

7. Mortality rate due to chronic respiratory diseases within the 30–70 age 
group, per 100,000 population within the same timeframe.

8. Birth rate among teenage mothers (typically aged 15 to 19 years) within 
a given period, per 100,000 population.

9. Rate of accessibility to essential healthcare services for the population 
(health units) per 100,000.

10. Rate of women aged 15 years or older who have encountered intimate 
partner violence within a specified period (gender‑  based violence), per 
100,000 population.

These indicators serve as crucial metrics in evaluating various aspects of de‑
mographic health, mortality patterns, access to healthcare services, and occurrenc‑
es of intimate partner violence among women within the specified region.

c) Techniquesof analysis

To achieve the primary objective of the research, a sequence of processes was un‑
dertaken, outlined as follows:

The initial step involved computing mortality rates to unveil the ratio of deaths 
within a particular area. To accomplish this, the following formula was employed:

Upon computing the rates, the remaining variables were transformed into 
index values by computing percentages. Subsequently, the variables underwent 
standardization utilizing the Z‑  score method. The Z‑  score indicates the number 
of standard deviations a value is positioned from the mean. This process involved 
the application of the following formula:

Where x represents the variable data, μ the mean of the data, and σ the standard 
deviation of the data.

Upon standardizing the variables, the alphanumeric dataset was linked with 
the cartographic dataset of the State of Mexico, facilitated by the GeoDa software. 
This software, developed by the University of Chicago since 2003, enabled the inte‑
gration of the two datasets.

Subsequently, to conduct the exploratory analysis of spatial data, the GeoDa 
software was utilized. The primary techniques employed within GeoDa included 
frequency histograms, scatter plots, and box plots aimed at identifying outliers. 
Additionally, Moran scatter plots and LISA charts were utilized.

Moran’s I statistic and Moran’s dispersion graph are methodologies employed 
to examine spatial dependence or self‑  correlation at a global level. These methods 
do not specifically identify hotspots or cold zones deviating from the overall trend 
of a variable or ascertain the presence of spatial concentrations. For this purpose, 
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LISA graphs were employed to analyze local spatial dependence (Santana G. and 
Aguilar A.G., 2019).

The computation involved generating a spatial weights matrix using the Queen 
criterion for spatial dependence, encompassing all observations sharing an edge 
or vertex (refer to figure 2) for Moran scatter plots (I Moran test) and LISA graphs. 
Following the matrix creation, the Moran dispersion graph, cluster map, and signif‑
icance map were derived using the available tools.

Figure 2. Contiguity matrix

Source: Authors.

To ascertain the presence or absence of significant spatial autocorrelation, 
a hypothesis test is conducted to determine if the spatial distribution of each vari‑
able occurs randomly.

The null hypothesis (H0) assumes that the spatial distribution is random, 
while the alternative hypothesis (H1) rejects this assumption, suggesting that the 
spatial distribution is non‑  random. Therefore, global and local spatial autocorrela‑
tion are framed within a system of hypotheses. This discussion aims to reject the 
null hypothesis of spatial randomness in favor of an alternative hypothesis indicat‑
ing either clustering or dispersion. A positive autocorrelation implies a clustered 
distribution pattern, whereas a negative autocorrelation suggests a scattered dis‑
tribution pattern.

Defining the level of significance, typically denoted by the symbol alpha (α), 
is crucial. Alpha represents the probability of rejecting the null hypothesis. If the 
probability of a specific value obtained in a test equals or is less than α, the null hy‑
pothesis (H0) is rejected in favor of the alternative (H1) (Buzai & Baxendale, 2012). 
Conventionally, the significance level is set at 0.05; if the p‑  value, the probability 
value, is less than or equal to 0.05, the null hypothesis is rejected in favor of the 
alternative hypothesis.

The p‑  value represents a probability and signifies numerical estimates of the 
area under a known distribution curve. Within analytical tools, the p‑  value assesses 
the likelihood that the spatial pattern of a variable stems from some non‑  random 
process (Mitchell, 2005). A p‑  value of 0.05 denotes 95% confidence, while 0.01 and 
0.001 indicate 99% and 99.9% confidence, respectively, that the observed autocor‑
relation is not the result of random chance.

Accompanying this analysis is the Local Spatial Association Index (LISA), 
which identifies local spatial association patterns and evaluates individual loca‑
tions’ influence on global statistics through Geographic Information Systems (GIS) 
(Anselin, 1995).
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This combined information allows the classification of significant locations 
into clusters (HH and LL) or spatial dispersions (HL, LH) as follows:

• High‑  High (HH): Signifies locations with high values surrounded by neighbo‑
ring locations with significant high values, indicating the presence of a high‑ 
valued cluster in that area.

• Low‑  Low (LL): Represents locations with low values surrounded by neighbo‑
ring locations with significant low values, suggesting the presence of a low‑ 
valued cluster in that area.

• High‑  Low (HL): Reflects locations with high values neighboring locations with 
significant low values, indicating a discrepancy between that area and its close 
neighbors.

• Low‑  High (LH): Denotes locations with low values surrounded by neighboring 
locations with significant high values, also indicating a spatial discrepancy.

Results

The graphical methods employed in the exploratory analysis of spatial data offer 
an initial insight into understanding the sociospatial information structure con‑
cerning the health‑  related variables aligned with the Sustainable Development 
Goals (SDGs) within the State of Mexico.

a) Underage death rateper 100,000

The under‑  five mortality rate stands as a critical metric signifying the health status 
of a population. Globally, this rate has shown a consistent decline in recent decades, 
attributable to advancements in medical care, expanded access to vaccinations, en‑
hanced living conditions, and increased education regarding maternal and child 
health. However, it’s crucial to acknowledge the considerable variability in under‑ 
five mortality rates across countries and within distinct socioeconomic strata with‑
in a given nation.

In the State of Mexico, the under‑  five mortality rate recorded for 2020 stood 
at 174.69 per 100,000 infants within this age bracket. The calculated Moran’s I sta‑
tistic reveals a value of ‑0.066, indicating a negative and statistically insignificant 
spatial correlation. The obtained p‑  value of 0.166 exceeds the conventional signifi‑
cance level of 0.05, leading to the acceptance of the null hypothesis. Consequently, 
the analysis indicates a spatial randomness in the under‑  five mortality rate across 
the region (figure 3).

b) Death rate over 65yearsper 100,000

This rate serves as a common metric to evaluate mortality among the elderly 
population, offering a crucial indicator for gauging the quality of healthcare ser‑
vices and other factors linked to population aging.

In the State of Mexico, the mortality rate among individuals aged over 65 
in 2020 stood at 5346.26981 per 100,000 inhabitants within this age cohort. 
Notably, the municipality of Toluca recorded the highest number of deaths, while 
Jilotzingo exhibited the lowest mortality rate.
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Figure 3. I Moran scatter plot.

Source: own elaboration in Geode

Figure 4. I Moran scatter plot.

Source: own elaboration in Geode

Figure 5.LISA analysis: cluster and statistical significance

Maternal death rate per 100,000

ource: own elaboration in Geode
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The computed Moran’s I statistic reflects a value of ‑0.126, indicating a nega‑
tive spatial correlation. The obtained p‑  value of 0.002, less than 0.05, leads to the 
rejection of the null hypothesis, supporting the acceptance of the alternative hy‑
pothesis, suggesting that the observed autocorrelation is not a result of random‑
ness (refer to Figure 4).

Local spatial autocorrelation (LISA) analysis identified 15 municipalities as sig‑
nificant in the model, with 13 having a 95% confidence interval. Notable municipal‑
ities within this classification include Zinacantepec, Tenango del Valle, Calimaya, 
Axapusco, and Amecameca. The cluster map highlights three municipalities with 
high‑  high values (Metepec, Tenango del Valle, and Ixtapan del Oro), while four mu‑
nicipalities exhibit high‑  low values, suggesting possible adjacency to locations with 
significantly lower values.

Moreover, the predominant concentration lies within the low‑  high classifica‑
tion, wherein municipalities exhibit low values while being surrounded by areas 
with significant high values. Noteworthy municipalities in this classification in‑
clude Almoloya de Juárez, Zinacantepec, and Lerma (refer to Figure 5).

c) Maternal deaths

Maternal deaths encompass the fatalities of women during pregnancy, childbirth, 
or within 42 days of the pregnancy’s termination, regardless of its duration or the site 
of pregnancy. These deaths occur due to causes related to or exacerbated by preg‑
nancy or its management, excluding accidental or incidental factors. Hence, mater‑
nal deaths serve as a pivotal indicator reflecting the state of maternal health and the 
efficacy of the medical care system within a country (Villerías and Santana, 2021).

In the State of Mexico, the maternal mortality rate recorded for 2020 stood 
at 70.94 per 100,000 live births. Notably, the municipalities of Cuautitlán and 
Toluca exhibited the highest maternal mortality rates, while Zacazonapan and 
Jilotzingo demonstrated the lowest rates within that year.

The calculated Moran’s I statistic revealed a value of 0.031, indicating a posi‑
tive but statistically insignificant spatial correlation. The obtained p‑  value of 0.168 
exceeds the standard significance level of 0.05, leading to the acceptance of the null 

Figure 6. I Moran scatter plot.

Source: own elaboration in Geode
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hypothesis. Consequently, the analysis suggests a state of spatial randomness con‑
cerning maternal mortality across the region (refer to Figure 6).

d) Under-28 death rateper 100,000

The mortality rate within the neonatal age group, referred to as the neonatal 
mortality rate, stands as a pivotal indicator assessing the quality of antenatal care, 
delivery practices, and neonatal healthcare services within a region.

In the State of Mexico, the neonatal mortality rate for the specified period was 
890.32 per 100,000 births. The municipalities of Toluca, Cuautitlán, and Valle de 
Bravo reported the highest rates of neonatal mortality. Conversely, 44 municipal‑
ities documented no deaths within this age group, including Nopaltepec, Melchor 
Ocampo, Cocotitlán, Ecatzingo, and Otzoloapan.

The calculated Moran’s I statistic revealed a value of ‑0.143, indicating a neg‑
ative spatial correlation. The obtained p‑  value of 0.002, below the standard 

Figure 7. I Moran scatter plot.

Source: own elaboration in Geode

threshold of 0.05, led to the rejection of the null hypothesis and the acceptance 
of the alternative hypothesis. This implies that the observed autocorrelation is not 
a consequence of randomness, indicating the presence of spatial autocorrelation 
(refer to Figure 7).

Local Spatial Autocorrelation (LISA) analysis identifies 10 municipalities 
as statistically significant in the model at a confidence level of 95%. Notable mu‑
nicipalities within this classification include Valle de Bravo, Tenango del Valle, and 
Ixtapan de la Sal.

The cluster map highlights distinct patterns: Zumpango displays high‑  high 
values, signifying a concentrated cluster of high rates. Meanwhile, Valle de Bravo, 
Chalco, and Ixtapan de la Sal fall into the high‑  low category, indicating potential 
proximity to areas with significantly lower rates. Additionally, municipalities like 
Tenango del Valle, Nopaltepec, Teloyucan, Cuautitlan, Nezahualcoyotl, and San 
Mateo Atenco exhibit low‑  high values, suggesting adjacency to areas with notably 
higher rates (refer to Figure 8).
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e) Rate of deaths due to cardiovascular disease and diabetes mellitus in the age group 30 
to 70yearsin a given periodper 100,000.

Chronic diseases and diabetes mellitus pose a burgeoning global public health 
challenge. These persistent ailments not only inflict considerable human suffering 
but also exert a substantial burden on healthcare systems and national economies 
due to their impact across all age groups and social strata (Villerias and Juárez, 
2020).

In the State of Mexico, the municipalities of Isidro Fabela, Toluca, and Capulhuac 
exhibited the highest mortality rates due to cardiovascular diseases, recording val‑
ues of 253.0, 244.8, and 221.5 per 100,000 inhabitants, respectively. Concerning di‑
abetes mellitus, the municipalities of Xalatlaco, Atizapán, and Tepetlixpa reported 
rates of 443.3, 400.9, and 389.7 per 100,000 inhabitants, respectively.

The computed Moran’s I statistics for cardiovascular diseases and diabetes 
mellitus stood at 0.134 and 0.210, respectively, indicating a positive spatial cor‑
relation. The derived p‑  values of 0.012 and 0.002, both below the significance 
threshold of 0.05, resulted in the rejection of the null hypothesis and acceptance 

Figure 8.LISA analysis: cluster and statistical significance

Source: own elaboration in Geode

Figure 9. I Moran scatter plots

Source:own elaboration in Geode
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of the alternative hypothesis. This signifies that the observed autocorrelation is not 
due to randomness but rather indicates the presence of spatial autocorrelation (re‑
fer to Figure 9).

Local Spatial Autocorrelation (LISA) analysis identifies 21 municipalities 
as statistically significant within the model, presenting a 95% confidence interval. 
High‑  high values for cardiovascular diseases are concentrated in municipalities 

Figure 10. LISA analysis: cluster and statistical significance

Source: own elaboration in Geode

situated at the central region of the State of Mexico. Conversely, for diabetes melli‑
tus, these high‑  high values are observed in smaller municipalities located toward 
the southeast and east of the region (refer to Figure 10)

f) Rate of deaths due to chronic respiratory diseases in the 30–70 age group in thesame 
periodper 100,000

The mortality rate attributed to chronic respiratory diseases in the State 
of Mexico stood at 168.8 per 100,000 individuals aged 30 to 70 years. Notably, mu‑
nicipalities such as Luvianos, Tianguistenco, Temoaya, Otzolotepec, and Lerma ex‑
hibited the highest mortality rates from chronic respiratory diseases. Conversely, 
108 municipalities reported no deaths from these causes in the given year, includ‑
ing San José del Rincón, San Felipe del Progreso, Ixtlahuaca, Almoloya de Juárez, 
and Zinacantepec.

The computed Moran’s I statistic yielded a value of 0.052, indicating a very 
weak positive spatial correlation. The derived p‑  value of 0.002, falling below the 
significance threshold of 0.05, led to the rejection of the null hypothesis and accep‑
tance of the alternative hypothesis. This indicates that the observed autocorrelation 
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is not a consequence of randomness but rather suggests the presence of spatial au‑
tocorrelation (refer to Figure 11).

Figure 11. I Moran scatter plot.

Source: own elaboration in Geod

Figure 12. LISA analysis: cluster and statistical significance

Source: own elaboration in Geode

Local Spatial Autocorrelation (LISA) analysis identifies a subset of 11 munic‑
ipalities as statistically significant within the model, bearing a 95% confidence 
interval. For instance, municipalities such as Luvianos, Tianguistenco, Temoaya, 
Temamatla, San Simón Guerrero, Otzolotepec, Lerma, Juchitepec, Jilotzingo, Donato 
Guerra, and Atlautla exhibit low‑  high values (refer to Figure 12).

g) Birth rate to teenage mothers (usually in the age range of 15 to 19years) in a given 
periodper 100,000
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The birth rate among teenage mothers aged 15 to 19 years in the State 
of Mexico amounted to 6238.86553 per 100,000 inhabitants within the same age 
group. Municipalities such as Luvianos, Santo Tomas, and Otzoloapan exhibited the 
highest rates of births among adolescent mothers. Conversely, 101 municipalities 
reported no births among adolescent mothers in the given year, including Toluca, 
Zinacantepec, Temoaya, Villa Victoria, and Metepec.

Figure 13. I Moran scatter plot.

Source: own elaboration in Geode

Figure 14. LISA analysis: cluster and statistical significance

Source: own elaboration in Geode

The computed Moran’s I statistic resulted in a value of 0.175, indicating a posi‑
tive spatial correlation. The derived p‑  value of 0.001, below the significance thresh‑
old of 0.05, led to the rejection of the null hypothesis and acceptance of the al‑
ternative hypothesis. This suggests that the observed autocorrelation is not due 
to randomness but rather indicates the presence of spatial autocorrelation (refer 
to Figure 13).
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The analysis of Local Spatial Autocorrelation (LISA) reveals that merely 
18 municipalities exhibit statistical significance within the model at a 95% con‑
fidence interval. Notable municipalities such as Tlalnepantla de Baz, Valle de 
Bravo, Cuautitlán Izcalli, Naucalpan de Juárez, Ecatepec de Morelos, Coacalco de 
Berriozábal, Melchor Ocampo, Lerma, Atenco, and Acolman demonstrate low‑  high 
values (refer to Figure 12).

h) Coverage rate of essential health services for the population(health units) per 100,000

The health services coverage rate in the State of Mexico reached 253,653.003 
per 100,000 population. Notably, municipalities such as Luvianos, Tejupilco, 
Zacualpan, Valle de Bravo, and Temascaltepec demonstrated the highest coverage 

Figure 15. I Moran scatter plot.

Source: own elaboration in Geode

Figure 16. LISA analysis: cluster and statistical significance

Source: own elaboration in Geode

rates. Conversely, 72 municipalities did not report any coverage rate, including 
Otumba, Morelos, Tonatico, Tezoyuca, and Temamatla.

The computed Moran’s I statistic indicated a value of 0.669, signifying a positive 
spatial correlation. The resulting p‑  value of 0.001, below the significance thresh‑
old of 0.05, led to the rejection of the null hypothesis in favor of the alternative 
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hypothesis. This suggests that the observed autocorrelation is not a consequence 
of randomness but indicates the presence of spatial autocorrelation (refer to Figure 
15).

The analysis of Local Spatial Autocorrelation (LISA) indicates significance 
in solely 26 municipalities within the model, maintaining a 95% confidence inter‑
val. For instance, municipalities such as Luvianos, Villa Guerrero, Valle de Bravo, 
Tianguistenco, Donato Guerra, Zumpango, Tultitlan, Temascaltepec, Sultepec, and 
Jaltenco exhibit low‑  high values (refer to Figure 16).

i) Rate of women aged 15yearsor olderwho have experienced intimate partner violence 
in each period (gender-based violence) per 100,000

The incidence rate of women aged 15 years who have experienced intimate 
partner violence in the State of Mexico was 151,086.009 per 100,000 inhabitants. 
Notably, the municipality with the highest rate of affected women is Atizapán. 
Conversely, 114 municipalities did not report any cases of women violated, includ‑
ing Aculco, Polotitlan, Soyaniquilpan de Juárez, Temascalcingo, and Acambay.

Figure 17. I Moran scatter plot.

Source: own elaboration in Geode

Figure 18. LISA analysis: cluster and statistical significance

Source: own elaboration in Geode
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Moran’s I statistic computed at 0.098 indicates a positive spatial correlation. 
However, the resulting p‑  value of 0.031 exceeds the significance threshold of 0.05. 
Consequently, the null hypothesis is rejected, and the alternative is accepted, sug‑
gesting that the observed autocorrelation is not due to randomness but indicates 
spatial autocorrelation (refer to Figure 17).

The analysis of Local Spatial Autocorrelation (LISA) reveals that only nine 
municipalities demonstrate significance within the model, maintaining a 95% con‑
fidence interval. For instance, municipalities such as Jilotepec, Ixtapan de la Sal, 
Atlautla, Atizapán, and Otumba display low‑  high values (refer to Figure 18).

Conclusions and Reflections

The Exploratory Analysis of Spatial Data (EASD) serves as a statistical method for 
investigating patterns and relationships within geographic data. Employing di‑
verse tools such as density maps, spatial autocorrelation indices, and interpolation 
techniques, EASD enables the visualization and comprehension of variable spatial 
distributions within a specific geographical region. This in‑  depth analysis of spatial 
and data elements unveils clustering or dispersion patterns, offering crucial terri‑
torial insights essential for informed decision‑  making.

Regarding the specific indicators:

The indicators concerning deaths of children under 5 years and those under 28 days 
show notably higher rates in municipalities like Toluca and Valle de Bravo, primar‑
ily urban areas with high mobility. Other municipalities in the east and south of the 
State of Mexico display similar characteristics.

The indicator for deaths of individuals over 65 years exhibits higher values 
in municipalities such as Axapusco, Metepec, Temamatla, Texcoco, and Toluca, 
mainly urban areas located in the central and eastern parts of the state. Similarly, 
indicators related to cardiovascular diseases, diabetes, and chronic respiratory dis‑
eases in the 30 to 70 age group showcase elevated values in urbanized municipal‑
ities, particularly in the central and surrounding areas of Mexico City. This could 
be linked to more sedentary lifestyles and dietary variations compared to predom‑
inantly rural municipalities.

A distinct pattern is evident between deaths attributed to diabetes and chronic 
respiratory diseases, with the former’s higher values concentrated in central mu‑
nicipalities and the latter’s higher values located in the northeast and east of the 
state.

Births to adolescent mothers, exhibiting elevated values in remote municipali‑
ties to the south and southwest, are characterized by scattered rural localities.

The indicator measuring health service availability, counted by the number 
of health units, necessitates consideration of each service’s specifics to accurately 
gauge its real coverage, encompassing factors such as the number of medical pro‑
fessionals, nursing staff, laboratory facilities, and pharmacies.
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Lastly, the indicator assessing intimate partner violence against women aged 
15 years or older, denoted as gender‑  based violence, showcases higher values 
in central and metropolitan areas near Mexico City, displaying a more clustered 
pattern attributed to enhanced economic activity and mobility. In contrast, lower 
values are prevalent in the southwestern regions mainly.
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